
Comparison of static analysis tooling for smart contracts
on the EVM

Rick Fontein
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

r.l.h.fontein@student.utwente.nl

ABSTRACT
The interest in smart contracts running on a blockchain
has increased lately. Since smart contracts live in a partic-
ularly hostile environment, they should be under rigorous
scrutiny before deployment. Formal verification is desired,
but often hard and time-consuming. Static analysis tools
can help detect common mistakes and errors. Recently a
set of static analysis tools have been developed specifically
targeting the smart contract platform of the Ethereum
project. This study aims to compare a set of these tools.
A comparison study of static analysis tools helps inform
smart contract developers of what these tool’s capabilities.
In addition, the results of this study highlight the features
and usability of the tools, and suggest improvements.

Keywords
Blockchain, Smart Contracts, Ethereum, EVM, Static Anal-
ysis

1. INTRODUCTION
Blockchain has proven itself in the past few years with
the widespread use and growth of Bitcoin. According to
coinmarketcap.com, the cryptocurrency sees over 5 million
USD traded in volume daily [2]. Bitcoin as a cryptocur-
rency is the original intention of the use of blockchain: a
peer-to-peer network capable of making payments with-
out a trusted party [18]. This is done with a shared public
ledger and a protocol to reach consensus over said ledger.
More recently, it has seen the adoption in areas broader
than just a simple ledger. One notable new use is that of
smart contracts, coined in 1996 by Nick Szabo, but popu-
larized by the public blockchain Ethereum [20].

A smart contract is a piece of code that is stored in the
blockchain. The nodes in the network execute the code
and enforce the result of the execution with a consensus
protocol. Since the code is run publicly, and more im-
portantly distributed, smart contracts create a platform
where applications that depend on fairness can thrive.
Examples of such applications are sub-cryptocurrencies,
multi-signature wallets, as well as other less financially
oriented applications such as escrow or wills.

Smart contracts live in a particularly hostile environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
27th Twente Student Conference on IT February 2nd, 2018, Enschede,
The Netherlands.
Copyright 2018, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

As described by Everts and Muller, once deployed they are
unchangeable, autonomous, unstoppable, publicly visible
and analyzable [14]. There have been incidents involving
bugs in smart contracts that have led to considerable fi-
nancial losses. Most notably the DAO incident in June
2016, where a smart contract containing the equivalent of
60 million USD was compromised [13].

Recently, there has been an effort on multiple fronts to
help prevent such incidents from happening. Formal veri-
fication of smart contract code is desirable but often hard
and time-consuming. Static analysis of the contract code
is a lightweight approach that can help detect common
mistakes and errors in smart contract programming [17].
A few tools performing such analysis have been developed
over the past year. A broad comparison focused on tool
features and relation to formal semantics has been done
by the authors of the KEVM framework [15].

However, no in-depth comparison of static analysis tools
has been performed. Hence this paper presents a com-
parison between three tools that analyze Ethereum smart
contracts. Evaluation is useful on multiple fronts: It gives
smart contract developers insight into these tools, what
they feature and lack, how usable the tool is in terms of
installation and analysis, how useful the tool’s output is.
It will also generate feedback on these relatively new tools.
This feedback includes suggestions for usability improve-
ments, expanding the detected mistakes and increasing the
feature set.

The research is executed in three parts. First, an overview
of the common mistakes made on the Ethereum platform
is presented in section 3. Five mistakes that are partic-
ular to the Ethereum platform are discussed in detail.
They provide a background of the Ethereum particular-
ities involved, and how these can be abused. For the
sake of brevity, mistakes that plague most programming
languages and best practices of the Ethereum platform
are only mentioned. Secondly, a benchmark of minimal
sources containing the described mistakes is created based
on the mistakes researched in the first part. The bench-
mark is then applied to the three tools, and the results are
reported. Finally, a discussion of the results and recom-
mendations is documented.

The contributions of this paper are:

• Overview of common mistakes specific to the Ethereum
platform.

• Overview of the claimed and successfully detected
mistakes by Oyente, Mythril and Porosity.

• Recommendations for improvement of the tool’s out-
put and feature set.

1



Figure 1. Example execution of a smart contracts
on Ethereum. A transaction uses the state stored
in the previous block to compute a new state’.
Both the transaction and the new state’ are stored
in the new block.

• Recommendations for smart contract developers which
tools to select.

2. BACKGROUND
2.1 Blockchain
A blockchain consists of lists of transactions, called blocks,
which are linked together cryptographically. Blocks typi-
cally contain a hash that serves as a pointer to the previous
block, a timestamp and a list of transactions. However,
other data can be stored in the blocks as well.

Bitcoin uses the blockchain as a distributed ledger in a
peer to peer network. The peers adhere to a protocol for
adding and validating new blocks to the chain. Once a new
block is added, the data in it can not be altered without
altering the blocks succeeding it.

In public platforms like Bitcoin or Ethereum, consensus
over the blocks is achieved by a Proof-of-Work scheme.
The peers have to solve a cryptographic puzzle by brute-
forcing it. The peer that finds the solution submits a
new block containing the solution and transactions to the
chain. If the block is valid, it is added to the chain and
the peer receives a reward for finding the solution.

2.2 Smart contracts
Smart contracts are ’Autonomous agents’ that are stored
on the blockchain. In Ethereum’s case, smart contracts
have an address, Ether balance (the native cryptocurrency
of Ethereum), code in the form of EVM byte-code instruc-
tions and a state of the defined variables. The contract’s
code can be executed by sending a transaction to the con-
tract’s address. This transaction includes some Ether to
serve as an execution fee, and the necessary arguments to
execute the code defined in the contract. The transaction

computes a new state based on a previous state stored
in the preceding block. Finally, the transaction and the
new state are stored in a new block. An illustration of a
transaction can be found in figure 1.

2.2.1 Ethereum Virtual Machine
Smart contracts on the Ethereum platform are executed
in the Ethereum Virtual Machine (EVM). The EVM is a
limited low-level stack machine capable of sequential ex-
ecution of its corresponding byte-code. EVM byte-code
consists of a set of opcodes with arguments, these instruc-
tions are specific to Ethereum and can, therefore, provide
access to variables of the environment, such as block num-
bers and hashes.

Execution of a transaction on the EVM is not without
cost. Every transaction to a contract contains Ether, the
native Ethereum currency, and a ’gas price’. Every EVM
instruction costs a certain amount of gas. The total ex-
ecution gas of a transaction multiplied by the gas price
is the execution fee. This fee is deducted from the Ether
that was sent with the transaction; the rest is returned to
the sender.

2.2.2 Solidity
The EVM byte-code is often compiled from higher level
languages, most notably Solidity, a JavaScript-like lan-
guage. An example of Solidity can be found in listing 1.
Like many programming languages, it offers common fea-
tures like control flow structures, types (booleans, integers,
arrays maps), functions, enums, and structs. Specific to
Solidity is a set of EVM related globally available variables
and functions. The most important and their purpose are
highlighted briefly in table 1.

Variable Meaning
block.number Current block number
block.timestamp Current block time
msg.sender Sender of the current call
msg.gas Remaining gas allowance
msg.value Ether sent with transaction
tx.gasprice Gas price of the transaction
tx.origin Sender of original transaction

(full callchain)
Function Meaning
throw Abort transaction, revert to old

state
<address>.send() Sends Ether to address, returns

false on failure
<address>.transfer() Send Ether to address, throws

on failure
<address>.call() Calls function at address with

Ether

Table 1. Ethereum specific variables and functions.

3. COMMON MISTAKES IN EVM
We present an overview of some common mistakes and
errors in smart contract programming that a malicious
user or miner, might exploit. Of all the errors featured
on Ethereum safety and best practices lists [11, 10], we
discuss five that are specific to the Ethereum platform in
more detail. Some of these errors are infamous for Ether
theft. For the sake of brevity, mistakes that plague most
programming languages and best practices are only men-
tioned in section 3.6.

2



1 contract Storage{
2 mapping(address => uint) balances;
3
4 function donate(address to) payable {
5 balances[to] += msg.value;
6 }
7
8 function balance(address who){
9 return balances[who];

10 }
11
12 function withdraw(uint amount){
13 //check if sufficient balance
14 if(balances[msg.sender] >= amount) {
15
16 //send funds , re-entrant vulnerable
17 msg.sender.call.value(amount)());
18
19 // update balance sheet
20 balances[msg.sender] -= amount;
21 }
22 }
23 }

Listing 1. Storage contract. Allows users to store
Ether in this contract. The withdraw function is
vulnerable to re-entrancy.

3.1 Re-entrancy
A function is called re-entrant when it can be interrupted
in the middle of execution and called again before complet-
ing the interrupted execution. Re-entrancy is the main
culprit that depleted the infamous DAO contract, caus-
ing a hard fork in the Ethereum chain [13]. The bug re-

lies on two particularities of the EVM. call() and other
low-level EVM instructions that forward Ether hand over
program execution to the callee. When the destination ad-
dress is a wallet, it simply deposits the funds, returns and
resumes execution. Secondly, the EVM allows for fallback
functions. These are nameless functions in a contract that
are executed whenever no function name is specified in a

call to the contract. When the destination of a call()

is a contract, the fallback assumes control of the program
execution. From there, the fallback can issue re-entrant
calls.

Consider the Storage contract in listing 1. It has an in-
ternal sheet for keeping track of the balances, a function
to donate to an address, checking balances and withdraw
funds from the contract. This contract is vulnerable in
the withdraw() function for re-entrancy: call() in this
function sends Ether to the callee, it forwards any remain-
ing gas it has. The attack contract in listing 2 abuses

the call() : When the withdraw function of the storage

sends a call() to the attacker, the attacker takes con-
trol of the program flow in the attacking contract’s fallback
function. Before the Storage contract has a chance to up-
date the internal balance sheet, the attacker recursively

calls withdraw() again. The check for sufficient funds
will succeed because the internal sheet has not been up-
dated yet, and the requested withdrawal funds will be sent
again, depleting the Ether balance of the storage contract.

1 Contract Attacker{
2
3 // location of vulnerable contract
4 Address storage;
5
6 function attack (){
7 // Initial call to withdraw to start

attack
8 storage.withdraw (1);
9 }

10
11 //fallback , executed when no function

is specified
12 function () payable {
13
14 //check if storage still has Ether
15 if(storage.balance >= msg.value) {
16 //re-entrant call to storage
17 storage.withdraw (1);
18 }
19 }
20 }

Listing 2. Attacker Contract. An example
contract that performs a re-entrant attack on the
storage contract in listing 1.

3.2 Timestamp dependency and weak ran-
dom generators

Contracts functions that rely on block or network specific
values can be predicted and abused by miners. Random
number generation (RNG) plays an important role in com-
puter science. In a public deterministic environment such
as Ethereum, it is particularly hard to generate random
numbers. Naive solutions use values that are time specific
to either the network or the block containing the trans-
action. Examples of such values are timestamps, coinbase
(the address of the miner), block numbers, gas limits or
block difficulty. Results of functions that rely on such
values can be predicted by a malicious miner, and conse-
quently, supply input that is advantageous to an attacker.
A notable example of a production contract vulnerable is
theRun, a gambling contract that uses timestamps to gen-
erate a random number used to award a jackpot [8].

3.3 Transaction order dependency
Smart contracts that are called based on a perceived state
of said contract should take transaction ordering into ac-
count. There is a time delay between the transaction com-
mitment (submitting to the network) and its confirmation
and inclusion in a block. Consider a contract that imple-
ments a puzzle. It has two functions, submit solution and
update reward. Upon submitting the correct answer a re-
ward in Ether is won. The owner of the contract could
listen to the network and upon detection of a transaction
that solves the puzzle, quickly send a transaction that low-
ers the reward. Since no transaction is included in a block
yet, the reward paid out is at the mercy of the miner which
determines which transaction is executed first. The owner
has a certain chance of beating the solving transaction.
Naive implementations of auctions and (stock) exchanges
are often vulnerable to this issue.

3.4 Call stack depth and checks on return
values

Calls to other contracts that contain Ether can fail, con-
tinuing execution based on the assumption of a successful
call could have a significant impact. Consider the king con-
tract in listing 3: it is a simple public display of wealth.
Users send Ether to the contract, if they send more Ether
than the current king, they are crowned king and the old

3



Mistake Oyente Mythril Porosity
Claimed Detected Claimed Detected Claimed Detected

Re-entrancy 3 3 3 3 ?1 3
Timestamp dependence 3 3 3 ?1

Call depth 3 3 ?2 3 ?1

Transaction order dependence 33 3 3
Check on CALL return value ?2 3 3 3
Integer under/overflow 3 3
Predictable RNG 3 3
Use of tx.origin 3 3
Call to untrusted contract 3 3
Unprotected Functions 3 3

1 None of these are explicitly mentioned as detectable by porosity
2 Missing check on call return value is part of call stack depth exploit
3 Tool output labels it as ’money concurrency’

Table 2. Claimed detection and experiment results

king’s Ether is returned. The send() instruction trans-

fers the funds back to the old king. If the send() fails,
program execution is still continued and a new king is
crowned. When no other functions that allow withdrawal
of Ether from the contract are available, the old king’s
funds will be trapped indefinitely.

An attack vector that abuses the call stack limits of the
EVM exists. The stack of the EVM is limited to 1024
frames. A new frame is created every time a function is
called. If an attacker would purposefully call itself recur-

sively 1023 times before calling claim() (frame 1024),
they will have used up the 1024 frames available. The

send() instruction to return the old king’s funds would
create the 1025th frame and thus fail.

Protocol changes to the way gas is calculated introduced a
practical limit to the number of frames that can be created.
As a result a recursive call would run out of gas well before
the hard limit of 1024 is reached [12]. Nevertheless, not
checking the return values of calls or Ether transfers poses
a significant security risk if another attack vector would
present itself.

1 contract King{
2 address king;
3 uint wealth;
4
5 function claim() payable{
6 //more funds than current king?
7 if (msg.value > wealth){
8
9 // Return old king’s Ether

10 //No check on return value (success),
program execution will always

continue.
11 king.send(wealth);
12
13 //Crown the new king
14 king = msg.sender;
15 wealth = msg.value;
16
17 } else {
18 //Not wealthier , reject transaction.
19 throw;
20 }
21 }
22 }

Listing 3. King Contract. The user that sends
the most Ether is crowned king. The return value
when sending funds to the old king is not checked,
on failure, the funds are trapped in the contract.

3.5 Use of tx.origin
Usage of tx.origin for access restriction allows for im-

personation attacks. All functions in a smart contract are
callable by everyone. The address of the caller is often
used for access restriction. tx.origin returns the ad-

dress of the wallet that issued the first call for a transac-
tion. msg.sender on the other hand returns the address

of the wallet or preceding contract that called the function.
Consider the following call chain: Wallet A→Contract
B→Contract C. Then, in contract C: tx.origin is the

address of wallet A and msg.sender is the address of

contract B.

If an attacker would succeed in having a user (Wallet A)
interact with a seemingly unrelated contract (Contract B),
the unrelated contract could issue a call to the vulnerable
contract (Contract C). Since tx.origin is the address

of the user, the attacker could potentially execute access
restricted code in the vulnerable contract.

3.6 Other mistakes and best practices
Other general mistakes such as integer over- and underflow
exist within Solidity. Wrong business logic or logic that
fails to check for such events could be exploitable.

Mismatching the exact name of the contract and construc-
tor is one such issue and often easily missed. (mismatched
capitalization, British American spelling differences, etc.)
The intended constructor compiles to a normal function
instead of a one-time executable constructor. If it con-
tains code to set the owner or other critical access values,
this code will become publicly callable.

Finally, the Ethereum community has compiled lists of
best practices [11, 10]. The list contains Ethereum specific
code styles, common business logic mistakes and smart
contract tips for implementing update mechanisms and
fail-safes.

4. TOOLS
In this section we list three tool that we compare. For
every tool we provide some background, why this tool is
in this comparison and the tool features including what
mistakes they claim to detect.

Furthermore we compare the documentation of each tool
on the availability and completeness of installation instruc-
tions, usage instructions, implementation details and fea-
ture documentation.

4



Finally, the tool installation process and installation time
is compared.

An overview of the last two parts is provided in table 3 on
page 6.

4.1 Oyente
Oyente is a static analysis tool based on symbolic execu-
tion. It has been developed in early 2016 as part of a
broader research paper on smart contract security [17].

Symbolic execution is an analyses technique that aims to
determine which inputs cause which program branches to
execute. It does this by defining the input as a sym-
bolic value, and expressing each conditional path in this
symbolic value. This value can then be used to calculate
what input values trigger that specific path [16]. Oyente
implements a symbolic executor that faithfully emulates
the EVM’s instruction set. It uses Microsoft Research’s
Z3 Theorem prover to decide satisfiability of the explored
paths.

Oyente is the only tool of the three discussed here that has
performed a benchmark on their own tool. The authors
scraped the Ethereum network’s first 1,459,999 blocks yield-
ing 19,366 contracts. A total analysis time of roughly 3000
hours on a large Amazon EC2 cluster is reported. The
flagged contracts that had their source code in Solidity
available were manually inspected to determine true and
false positives.

Oyente’s main goal is static analysis of smart contracts, it
makes a solid first candidate in this comparison.

4.1.1 Features

• Analysis with symbolic execution

• Input can be supplied as EVM byte-code and Solid-
ity source code.

• Input can be supplied locally and via URL’s.

• Assertion checker for contract assertions. Assertions
are true-false expressions which are assumed to be
always true at runtime, if it fails at runtime, the
transaction is rejected.

Table 2 on page 4 provides an overview of the claimed de-
tected errors per tool. Some particularities in naming ex-
ist: The paper appropriately names the transaction order
dependency as such, but the tool outputs this as ’Money
concurrency bug.’ Furthermore, in the documentation of
the call-stack error implementation it is explained that de-
tection uses a check of the return value of call(), covering
the broader category of errors of which the call stack bug
is part of: explicit check on call return value.

4.1.2 Documentation
The tool’s main documentation is the accompanying pa-
per. The paper details design details including Oyente’s
architecture as well as an implementation overview. The
responsibilities of the four main source files are described.
The section that discusses the core analysis portion of the
code base explains how the 4 errors that the paper focuses
on are detected. A limited pointer to extend the analysis
capabilities of the tool is provided as well. Furthermore,
the repository’s readme file contains an installation and
quick start guide. The file code.md reiterates the code
structure as described in the paper [6].

4.1.3 Installation
Oyente is written in python 2.7. It provides three ways of
installing the tool: A prepared docker container ready to
go, installation from the python repository ’pip’ and step-
by-step instruction for manual installation of dependencies
and the tool. Installation of Oyente via pip took 3 minutes
on Ubuntu 16.04/Intel I7-3630QM/8GB RAM. Assuming
developer tools that are essential to the platform (Solidity
compiler, web3) are already installed, most time was spent
pulling and installing the dependencies specified in the pip
package.

4.2 Mythril
Mythril is a tool whose main goal was chain exploration,
over time it has added a module for static analysis. Tools
like Etherscan, Remix and testrpc existed before Mythril
to browse, (de)compile, disassemble and debug contracts.
However, certain tasks such as searching the chain were
not possible with these tools. Mythril aimed to fill that
gap by adding a comprehensive blockchain exploration
tool, as well as an Ethereum disassembler and Ethereum
scripting abilities in Python. Python scripting allowed for
an concolic testing module named ’Laser’ to be added to
the tool.

Concolic testing is a hybrid analysis technique that per-
forms symbolic execution along a concrete execution path
[19]. Like Oyente, Microsoft Research’s Z3 Theorem prover
is used in conjunction with the symbolic execution engine
laser-ethereum present in Mythril.

4.2.1 Features

• Analysis with concolic testing.

• Input can be supplied as EVM byte-code and Solid-
ity source code.

• Input can be supplied locally and remote addresses
of on chain contracts.

• Control Flow Graph (CFG) visualization. A CFG
is a representation of a programs possible execution
paths in graph notation.

• Blockchain exploration, search options allowing sim-
ple boolean expressions:

– Specific contracts

– Specific function calls

– EVM opcode sequences

• Disassembler for byte-code string or address of an
on-chain contract.

• Cross referencing of contracts. Useful for finding
contracts that reference other contracts.

Table 2 on page 4 provides an overview of the claimed
detected errors per tool.

4.2.2 Documentation
The main documentation of Mythril is the Readme of the
Github repository [5]. It contains an installation section,
as well as usage guides for security analysis, CFG output,
blockchain exploration and provided utilities (disassem-
bler and cross-references). No implementation details are
published apart from a generated PyDoc based on limited
comments in the source code of the analysis modules.

5



4.2.3 Installation
Mythril is built on Python 3.5. It provides two ways of
installing: Using package manager pip to install the tool
and its dependencies or downloading the Github repos-
itory and running an included installer. Relatively to
Oyente, installation is slow: Mythril has a larger set of
dependencies it needs to pull and build. The pip install
took 11 minutes on Ubuntu 16.04/Intel I7-3630QM/8GB
RAM. Linux builds with newer versions of certain libraries
(e.g.: LibSSL) like Ubuntu 17.10 have dependency issues
with Ethereum libraries, which at the time of writing, fails
Mythril from building.

4.3 Porosity
Porosity is a decompilation tool that tries to translate
EVM bytecode into Solidity. Porosity was an effort from
the side of reverse-engineers in their desire to having ac-
cess to source code. As mentioned on the Github page,
this would then allow for static and dynamic analysis of
compiled contracts, including vulnerability discovery [6].

4.3.1 Features

• Analysis of contracts, the documentation does not
detail how this is achieved.

• Input can be supplied in the form of EVM byte-code.

• ABI parser: Lists the functions in the contract from
the pre-loader EVM byte-code.

• Disassembler of EVM byte-code.

• CFG vizualisation.

• Decompilation of EVM byte-code into Solidity.

Table 2 on page 4 provides an overview of the claimed de-
tected errors per tool. The tool’s Github pages mentions
the ability of vulnerability analysis within the tool, as well
as an example tool output containing a warning for a pos-
sible re-entrancy vulnerability. The white paper lists the
re-entrancy, call stack depth and timestamp dependency
mistakes, but makes no explicit claims that Porosity can
detect any of these.

4.3.2 Documentation
Documentation for Porosity is limited compared to Oyente
and Mythril. The Github repository provides a readme
with the steps and execution of an example decompila-
tion. The white paper that is contained in the Github
repository has little documentation of the tool itself, it
merely explains the workings of Ethereum, and the same
decompilation example as in the readme. The wiki page
on Github contains an exact copy of the text in the paper.

4.3.3 Installation
The readme file has an overview of the three major plat-
forms: Windows, Linux and Mac OS X. All indicating a
build success or supported status. The Github provides
binaries for windows only. The existence of a makefile
in the repository is the only indicator on how to install
on a platform other than windows. No dependencies are
listed anywhere other than calls in the actual source code
of Porosity. Building Porosity with the makefile will cause
it to fail on systems that do not have the correct depen-
dencies. A reiterative process of installing or upgrading
the missing libraries follows until the tool fully compiles.
26 minutes were spent form the first build attempt to a
successful build.

Documentation Oyente Mythril Oyente

Detected Errors X X ?1

Implementation X 7 7
Dependency list X X 7
Usage instructions X X X
Installation instruc-
tions

X X 72

Installation time
(minutes)

3 11 26

Last updated 2018-1-5 2018-1-16 2018-1-16
1 No explicit claims, three mistakes are discussed in docu-
mentation.
2 Windows compiled binaries are provided.

Table 3. Documentation and installation

5. EXPERIMENTS
We apply a benchmark of Solidity sources on Oyente,
Mythril and Porosity, the tool output is then analyzed on
two aspects. First we analyze the tool output for the er-
rors they report on the different sources. The benchmark
consists of concise smart contracts that are vulnerable to
the mistakes described in section 3. The results are then
compiled in table 4 on page 7. This table contains for every
source in the benchmark the manually confirmed mistakes,
and the results of the static analysis of the tools.

Secondly, the tool output itself is analyzed for several fac-
tors: How the mistake is reported. If and how the tool
pinpoints the error in the source. If the tool provides con-
text and finally if it provides suggestions for improvement.

The benchmark can be extended by providing sources and
repeating the process described above. A fourth tool can
be added to the comparison in a similar fashion.

5.1 Results
Table 2 on page 4 provides an overview of the detected
errors. The results of the specific sources of the benchmark
have been recorded in table 4 on page 7. Particularities
and oddities of the results of certain results are noted in
the footnotes.

5.2 Detected mistakes
The version of Oyente used is different from the one used
by Luu et al [17]. The Ethereum community has developed
it further. The community version of Oyente detects three
out of the four claimed mistakes. The fact that it fails to
recognize timestamp dependency is surprising, since the
bug and a quantitative benchmark is discussed by Luu
et al. The production on-chain source contract that was
used to illustrate the mistake in the paper[8] has no flagged
vulnerabilities either.

Mythril detects most of the claimed errors. It does not
detect the transaction order vulnerability present in the
puzzle contract. Oyente correctly reports this error and
identifies the two separate flows leading to the vulnerabil-
ity. The documentation of Mythril claims detection, but
does not provide background information, implementation
details or a link to the source.

Porosity did not make explicit claims which errors it de-
tects. Our benchmark shows that it only detects re-entrancy,
not the other two that were discussed in the documenta-
tion. Moreover, the tool’s decompilation ability seems to
be very limited. One of our sources timed out after 13
minutes, two sources segfault before completing decompi-
lation. Even the decompilation of the storage contract,

6



Contract Confirmed mistakes Oyente Mythril Porosity
storage re-entrancy 3 3 3
king call stack depth/Check on return value 3 31 7
roulette timestamp dependence 7 31,2 73

puzzle transaction order dependence 3 7 74

underflow integer underflow 7 3 7
overflow integer overflow 7 3 7
origin usage of tx.origin 7 3 73

weak random predictable RNG 7 31 7
ether send unprotected functions 7 3 7

1 Additional error: taintable critical storage; The destination address of a call forwarding
Ether can be set directly or via taintable storage.
2 Additional error: Integer overflow. Intended behaviour.
3 Segfault in execution, failed to decompile.
4 Execution halted after 13 minute timeout.

Table 4. Benchmark results

which correctly identified re-entrancy, is incorrect. The
output reports two re-entrancy calls and highlights two
lines of decompiled code. The lines contain exactly the
same call, including parameter. The first of these calls is
supposed to be a throw statement.

It should be noted that this benchmark will not provide a
definitive answer as to whether or not the tool is capable of
detecting a specific type of mistake. Quantitative analysis
is needed to answer that question as well as to determine
the false and true positive rates. It does provide a basic
insight in the tools capabilities as the sources are slimmed
down and purposefully programmed to demonstrate these
mistakes.

5.3 Tool output
Oyente claims detection for 4 errors, the tool output dis-
plays a boolean flag for each of these. If a true flag is set
and a Solidity source was supplied, it outputs the line and
character number where the mistake was detected. Under-
neath it prints the specific instruction that caused the flag.
For the transaction dependency, it identifies the multiple
flows that caused the flag. These flows contain the same
line, character and instruction information. No contextual
information or suggestion for improvements are provided.

Mythril shows the function name and the PC address
where the mistake is located. Along with the location
it provides a brief description of the mistake and how it
affects the source. If a taintable storage location is found,
it lists which functions set or alter values of the specific
storage slot.

Porosity attempts to decompile the supplied EVM code.
If a mistake was detected, the tool highlights the decom-
piled line that is affected in red, along with it an error
message of the possible vulnerability. Furthermore, the
implementation of supported EVM instructions is limited.
Every source in our benchmark produced a warning of un-
supported instructions, causing incomplete or faulty de-
compilations. Like Oyente, no contextual information or
suggestion for improvements is provided.

6. RECOMMENDATIONS
6.1 Smart Contract Developers
Judging the tools based on the results in this research,
Mythril has the largest set of mistakes it can detect. Al-
though it should be noted that none of the tools in this
paper can successfully detect all the mistakes discussed

in section 3. Mythril is therefore the best candidate for
developers seeking static analysis. This is aided by the
brief contextual messages in Mythril’s output, making it
more accessible for those less informed. For more complete
coverage, running Oyente to detect transaction order de-
pendencies is a good solution. The limited decompilation
ability and the limited amount of mistakes Porosity can
detect, make it the least appealing of the three.

6.2 Tool Developers
Oyente can be improved by fixing the timestamp depen-
dency detection. In the same spirit, it could add detec-
tion for dependency of predictable block properties such
as block difficulty. Moreover, Oyente uses symbolic execu-
tion, a by product of this process is a CFG. As mentioned
in the Oyente repository, with some effort, an export of
this CFG could be made available for manual analysis.

Support for transaction order dependence can still be added
to Mythril. Implementation details are limited to a gen-
erated PyDoc, this could be improved upon.

Porosity analysis is limited, before extending vulnerability
detection, the supported EVM instruction set should be
expanded for complete decompilation. In addition, Poros-
ity is not stable. Several sources in our benchmark failed to
decompile due to segfaults or timeouts. Furthermore, the
documentation is incomplete. A listing of what mistakes
it can detect should be included in the documentation. In-
stallation instructions for platforms other than Windows
can be added as well.

7. FURTHER RESEARCH
As mentioned in the discussion of the benchmark results,
quantitative analysis on the tool can give a more definitive
answer of the tool’s capabilities of detecting errors, includ-
ing providing statistics of true and false positive rates. The
benchmark used in this paper are slimmed down contracts
containing the mistakes mentioned in section 3. A bench-
mark containing larger, more complex (more realistic)

Mythril and Oyente use symbolic execution: they compute
a symbolic value for all program branches. More complex
sources can take exponentially more analysis time, a com-
parison based on time usage is therefore useful.

More code analyzers for the Ethereum platform can be
added to the comparison. Dr. Y’s [3] is another symbolic
executor written in OCaml. Manticore has recently added
support for Ethereum, another symbolic execution tool [4].
Securify is a tool that claims formal analysis and strives

7



to achieve no false negatives, implementation is not public
[7].

Other areas of interest are those of different programming
Paradigms. Solidity is one of the higher level languages
compiling to EVM byte-code. Other higher level languages
are available: Vyper[9] and Bamboo[1] are security focused
by design. As a result these languages are less flexible
compared to Solidity. Vyper for example has no support
for unlimited loops.

8. REFERENCES
[1] Bamboo github repository.

https://github.com/pirapira/bamboo. Accessed:
2018-01-21.

[2] Cryptocurrency market capitalizations.
https://coinmarketcap.com/. Accessed:
2017-12-01.

[3] Dr. y’s ethereum contract analyzer.
http://dry.yoichihirai.com/. Accessed:
2018-01-21.

[4] Manticore github repository.
https://github.com/trailofbits/manticore.
Accessed: 2018-01-21.

[5] Mythril github repository.
https://github.com/b-mueller/mythril.
Accessed: 2017-12-01.

[6] Porosity github repository.
https://github.com/comaeio/porosity. Accessed:
2017-12-01.

[7] Securify: Formal verification of ethereum smart
contracts. http://securify.ch/. Accessed:
2018-01-21.

[8] ’the run’ smart contract.
https://etherscan.io/address/

0xcac337492149bdb66b088bf5914bedfbf78ccc18.
Accessed: 2018-01-17.

[9] Vyper github repository.
https://github.com/ethereum/vyper. Accessed:

2018-01-21.

[10] Ethereum smart contract security best practices.
https://consensys.github.io/

smart-contract-best-practices/, Jun 2016.
Accessed: 2018-01-17.

[11] Ethereum contract security techniques and tips.
https://github.com/ethereum/wiki/wiki/Safety,
Dec 2017. Accessed: 2018-01-17.

[12] V. Butarin. Long-term gas cost changes for io-heavy
operations to mitigate transaction spam attacks.
https://github.com/ethereum/eips/issues/150,
Sep 2016. Accessed: 2018-01-16.

[13] V. Buterin. Critical update re: Dao vulnerability.
https://blog.ethereum.org/2016/06/17/

critical-update-re-dao-vulnerability/, Jun
2016. Accessed: 2017-12-01.

[14] M. Everts and F. Muller. Will that smart contract
really do what you expect it to do?, 2017.

[15] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues,
P. Dayan, D. Guth, and G. Rosu. KEVM: A
Complete Semantics of the Ethereum Virtual
Machine. Aug 2017.

[16] J. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.
cited By 1257.

[17] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and
A. Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages
254–269. ACM, 2016.

[18] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. http://bitcoin.org/bitcoin.pdf, 2009.

[19] K. Sen, D. Marinov, and G. Agha. Cute: a concolic
unit testing engine for c. In M. Wermelinger and
H. Gall, editors, ESEC/SIGSOFT FSE, pages
263–272, 2005.

[20] N. Szabo. Smart contracts: Building blocks for
digital markets, 1996.

8


